您当前的位置: > 山寨币 >

区块链技术六大核心算法,不清楚的快来看看吧!-数字虚拟货币基

发布时间:2020-09-29 10:59

区块链技术六大核心算法,不清楚的快来看看吧!区块链核心算法一:拜占庭协定

拜占庭的故事大概是这么说的:拜占庭帝国拥有巨大的财富,周围10个邻邦垂诞已久,但拜占庭高墙耸立,固若金汤,没有一个单独的邻邦能够成功入侵。任何单个邻邦入侵的都会失败,同时也有可能自身被其他9个邻邦入侵。拜占庭帝国防御能力如此之强,至少要有十个邻邦中的一半以上同时进攻,才有可能攻破。然而,如果其中的一个或者几个邻邦本身答应好一起进攻,但实际过程出现背叛,那么入侵者可能都会被歼灭。于是每一方都小心行事,不敢轻易相信邻国。这就是拜占庭将军问题。

在这个分布式网络里:每个将军都有一份实时与其他将军同步的消息账本。账本里有每个将军的签名都是可以验证身份的。如果有哪些消息不一致,可以知道消息不一致的是哪些将军。尽管有消息不一致的,只要超过半数同意进攻,少数服从多数,共识达成。

由此,在一个分布式的系统中,尽管有坏人,坏人可以做任意事情(不受protocol限制),比如不响应、发送错误信息、对不同节点发送不同决定、不同错误节点联合起来干坏事等等。但是,只要大多数人是好人,就完全有可能去中心化地实现共识。

区块链核心算法二:非对称加密技术

在上述拜占庭协定中,如果10个将军中的几个同时发起消息,势必会造成系统的混乱,造成各说各的攻击时间方案,行动难以一致。谁都可以发起进攻的信息,但由谁来发出呢?其实这只要加入一个成本就可以了,即:一段时间内只有一个节点可以传播信息。当某个节点发出统一进攻的消息后,各个节点收到发起者的消息必须签名盖章,确认各自的身份。

在如今看来,非对称加密技术完全可以解决这个签名问题。非对称加密算法的加密和解密使用不同的两个密钥.这两个密钥就是我们经常听到的公钥和私钥。公钥和私钥一般成对出现, 如果消息使用公钥加密,那么需要该公钥对应的私钥才能解密; 同样,如果消息使用私钥加密,那么需要该私钥对应的公钥才能解密。

区块链核心算法三:容错问题

我们假设在此网络中,消息可能会丢失、损坏、延迟、重复发送,并且接受的顺序与发送的顺序不一致。此外,节点的行为可以是任意的:可以随时加入、退出网络,可以丢弃消息、伪造消息、停止工作等,还可能发生各种人为或非人为的故障。我们的算法对由共识节点组成的共识系统,提供的容错能力,这种容错能力同时包含安全性和可用性,并适用于任何网络环境。

区块链核心算法四:Paxos 算法(一致性算法)

Paxos算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。一个典型的场景是,在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。为保证每个节点执行相同的命令序列,需要在每一条指令上执行一个一致性算法以保证每个节点看到的指令一致。一个通用的一致性算法可以应用在许多场景中,是分布式计算中的重要问题。 节点通信存在两种模型:共享内存和消息传递。Paxos算法就是一种基于消息传递模型的一致性算法。706878

区块链核心算法五:共识机制

区块链共识算法主要是工作量证明和权益证明。拿比特币来说,其实从技术角度来看可以把PoW看做重复使用的Hashcash,生成工作量证明在概率上来说是一个随机的过程。开采新的机密货币,生成区块时,必须得到所有参与者的同意,那矿工必须得到区块中所有数据的PoW工作证明。与此同时矿工还要时时观察调整这项工作的难度,因为对网络要求是平均每10分钟生成一个区块。

区块链核心算法六:分布式存储

分布式存储是一种数据存储技术,通过网络使用每台机器上的磁盘空间,并将这些分散的存储资源构成一个虚拟的存储设备,数据分散的存储在网络中的各个角落。所以,分布式存储技术并不是每台电脑都存放完整的数据,而是把数据切割后存放在不同的电脑里。就像存放100个鸡蛋,不是放在同一个篮子里,而是分开放在不同的地方,加起来的总和是100个。

算法演进之路

算法演进

关于算法一词,目前国内用户使用的比较模糊,有时指共识机制,比如POW算法,POS算法;有时指具体的Hash算法,比如SHA256,SCRYPT。应该说这是由于早期从外文资料翻译过来概念模糊导致的错误,后来人云亦云。共识机制(以前一般叫Proof,现在经常使用Consensus)和算法(Algorithm)在英文资料里语义清晰,不能混为一谈,两者都是区块链技术体系里的重要支柱。

因此当我们说X币使用Y算法的时候,其实具体指的是采用何种Hash算法,而且隐含的前提条件是这个币使用POW证明方式。只有在POW下讨论选取何种算法才有意义,算法的各种复杂设计才能体现其用处。为什么呢,中本聪在设计比特币的时候其实有很多地方用到Hash函数,比如计算区块ID,计算交易ID,构造代币地址等。我们说的算法具体是指用何种Hash函数计算区块ID,所谓算法创新也就是在这个地方下功夫。此外其他任何用到Hash函数的地方,对计算难度没有要求,而且应该选用可以快速运算的算法,尤其在计算交易ID时候,不然影响区块链同步速度。因此如果选用POS方式,计算区块ID也应该使用容易运算的算法。

Hash函数

如上所言,我们经常说的POW算法本质是一个Hash函数。Hash函数是一个无比神奇的东西,说他替中本聪打下了半壁江山一点不为过,学习比特币应该从学习Hash函数入手,理解了Hash函数再去学比特币原理将事半功倍,不然将处处感觉混沌,难以开窍。而中本聪也将Hash函数的所有特性使用得淋漓尽致:

已经有很多Hash函数被设计出来并广泛应用,不过Hash函数一般安全寿命都不长,被认为安全的算法往往没能使用多久就被成功攻击,新的更安全的算法相继被设计出来,而每一个被公认为安全可靠的算法都有及其严格的审计过程。在币圈中我们经常说某某币发明了某种算法,其实主要都是使用那些被认证过的安全算法,或是单独使用,或是排列组合使用。

SHA256

SHA (Secure Hash Algorithm,译作安全散列算法) 是美国国家安全局 (NSA) 设计,美国国家标准与技术研究院 (NIST) 发布的一系列密码散列函数,经历了SHA-0,SHA-1,SHA-2,SHA-3系列发展。NSA于2007年正式宣布在全球范围内征集新新一代(SHA-3)算法设计,2012年公布评选结果, Keccak算法最终获胜成为唯一官方标准SHA-3算法,但还有四种算法同时进入了第三轮评选,分别是:BLAKE, GrøSTL, JH和SKEIN,这些算法其实也非常安全,而且经受审查,被各种竞争币频繁使用。

比特币采用SHA256算法,该算法属于SHA-2系列,在中本聪发明比特币时(2008)被公认为最安全最先进的算法之一。除了生成地址中有一个环节使用了REPID-160算法,比特币系统中但凡有需要做Hash运算的地方都是用SHA256。随着比特币被更多人了解,大家开始好奇中本聪为何选择了SHA256,同时对SHA256的安全性发表各种意见,SHA256妥妥经受了质疑,到目前为止,没有公开的证据表明SHA256有漏洞,SHA256依然牢牢抗住保卫比特币安全的大旗。当然大家心里都明白,没有永远安全的算法,SHA256被替代是早晚的事,中本聪自己也说明了算法升级的必要和过程。

SCRYPT

后来随着显卡挖矿以及矿池的出现,社区开始担心矿池会导致算力集中,违背中本聪一CPU一票的最初设计理念。在那段时间,中心化的焦虑非常严重,讨论很激烈,比特币一次又一次被死亡,直到现在,针对矿池是否违背去中心化原则的争论仍在继续。

无论如何,有人将矛头指向SHA256,认为是算法太容易导致矿机和矿池出现,并试图寻找更难的算法。

恰逢其时,使用SCRYPT算法的莱特币(Litecoin)横空出世。据说SCRYPT是由一位著名的黑客开发,由于没有得到诸如SHA系列的严格的安全审查和全面论证,一直没被广泛推广使用。与SHA256算法相比,SCRYPT占用的内存更多,计算时间更长,并行计算异常困难,对硬件要求很高。很显然,SCRYPT算法具有更强的抵御矿机性,莱特币还将区块时间改为2.5分钟,在那个山寨币还凤毛麟角年代,莱特币依靠这两点创新大获成功,长期稳坐山寨币第一宝座位置。

后来有人在SCRYPT的基础上稍作修改形成Scrypt –N算法,改进思路都一样,都是追求更大的内存消耗和计算时间,以有效阻止ASIC专用矿机。

很快,莱特币的成功催生了各种各样的算法创新,2012至2014年间,算法创新一直都是社区讨论的热门话题,每一个使用创新算法的币种出现,都能刮起一阵波澜。

串联算法

重新排列组合是人类一贯以来最常用的创新发明方法。很快,有人不满足于使用单一Hash函数,2013年7月,夸克币(Quark)发布,首创使用多轮Hash算法,看似高大上,其实很简单,就是对输入数据运算了9次hash函数,前一轮运算结果作为后一轮运算的输入。这9轮Hash共使用6种加密算法,分别为BLAKE, BMW, GROESTL, JH, KECCAK和SKEIN,这些都是公认的安全Hash算法,并且早已存在现成的实现代码。

这种多轮Hash一出现就给人造成直观上很安全很强大的感觉,追捧者无数。现今价格依然坚挺的达世币(DASH,前身是暗黑币,Darkcoin,)接过下一棒,率先使用11种加密算法(BLAKE, BMW, GROESTL, JH, KECCAK, SKEIN, LUFFA, CUBEHASH, SHAVITE, SIMD, ECHO),美其名曰X11,紧接着X13,X15这一系列就有人开发出来了。

S系列算法实际是一种串联思路,只要其中一种算法被破解,整个算法就被破解了,好比一根链条,环环相扣,只要其中一环断裂,整个链条就一分为二。

并联算法

有人串联,就有人并联,Heavycoin(HVC)率先做了尝试。HVC如今在国内名不见经传,当时还是名噪一时,首次实现链上游戏,作者是俄罗斯人,后来不幸英年早逝,在币圈引起一阵惋惜。 HVC算法细节:

对输入数据首先运行一次HEFTY1(一种Hash算法)运算,得到结果d1

以d1为输入,依次进行SHA256、KECCAK512、GROESTL512、BLAKE512运算,分别获得输出d2,d3,d4和d5

分别提取d2-d5前64位,混淆后形成最终的256位Hash结果,作为区块ID。

之所以首先进行一轮HEFTY1 哈希,是因为HEFTY1 运算起来极其困难,其抵御矿机性能远超于SCRYPT。但与SCRYPT一样,安全性没有得到某个官方机构论证,于是加入后面的四种安全性已经得到公认的算法增强安全。

对比串联和并联的方法,Quark、X11,X13等虽使用了多种HASH函数,但这些算法都是简单的将多种HASH函数串联在一起,仔细思考,其实没有提高整体的抗碰撞性,其安全性更是因木桶效应而由其中安全最弱的算法支撑,其中任何一种Hash函数遭遇碰撞性攻击,都会危及货币系统的安全性。

HVC从以上每种算法提取64位,经过融合成为最后的结果,实际上是将四种算法并联在一起,其中一种算法被破解只会危及其中64位,四中算法同时被破解才会危及货币系统的安全性。

比特币只使用了一种Hash算法,假如未来某日SHA256被证明不再安全时,虽然可以更该算法,但考虑到如今硬分叉猛于虎的局面,届时引发动荡不可避免,但如果使用并联算法,就可以争取平静的硬分叉过渡时间。

PRIMECOIN

正当一部分人在算法探索之路上进行的如火如荼之时,另一部分人的声音也非常刺耳,那就是指责POW浪费能源(彼时POS机制已经实现)。POW党虽极力维护,但也承认耗费能源这一事实。这一指责打开了另一条探索之路,即如果能找到一种算法,既能维护区块链安全,这些Hash运算又能在其他方面产生价值,那简直更完美。

在这条探索之路上最让人振奋人心的成果来自于Sunny King(这大神之前已经开发了Peercoin,点点币)发明的素数币(Primecoin)。素数币算法的核心理念是:在做Hash运算的同时寻找大素数。素数如今已被广泛应用于各个领域,但人类对他的认识还是有限。素数在数轴上不但稀有(相对于偶数而言),而且分布不规律,在数轴上寻找素数只能盲目搜索探测,这正是POW的特征。

POW还有另一个要求是容易验证,这方面人类经过几百年探索已经获得一些成果。素数币使用两种方法测试,首先进行费马测试(Fermat Test),通过则再进行欧拉-拉格朗日-立夫习兹测试(Euler-Lagrange-Lifchitz Test),还通过测试则被视为是素数。需要指出的是,这种方法并不能保证通过测试的数百分百是素数,不过这并不影响系统运行,即便测试结果错误,只要每个节点都认为是素数就行。

素数币其实找的是素数链-坎氏链,存在三个特定类型的坎氏素数链:第一类坎氏链,第二类坎氏链和双坎氏链。

举第一类来说明,规则是:素数链中每个数都是前一个数的两倍减一,比如:

1531,3061,6121,12241,24481

数列的下一个数48961(24481*2-1)不是素数,因而这个坎氏链的长度是5,素数币的目标就是探索更长的坎氏链(以上三类都可以)。

那么现在最重要的问题来了,如何用坎氏链来验证一个区块是否合格呢?素数币实现的细节是这样的:

计算中本聪区块头Hash,hashBlockHeader = SHA256(BlockHeader)

通过变换获得坎氏链的第一个数:originNum = hashBlockHeader * Multiplier

获取originNum之后就可以测试并计算素数链长度的整数部分,小数部分的计算与坎氏链最后一个非素数的跨度相关。

每个区块的乘积因子Multiplier各不相同,计算过程和hashBlockHeader相关,素数币为此对区块头进行修改,专门增加一个字段(bnPrimeChainMultiplier)来存放这个乘积因子。但是以上第一步计算hashBlockHeader时输入数据<并不包含这个乘积因子,这也是为啥特别指出中本聪区块头。

由于素数在数轴上分布不均匀,且根据目前掌握的知识来看,数越大,素数越稀有,寻找难度并不是线性递增,耗时也就不可预估,但是区块链要求稳定出块。正因为这点,素数币算法没有得到热捧,但这种探索并非没有意义,利用POW工作量的幻想并没有停止,探索还在继续。

ETHASH

以太坊(Ethereum)一开始就打算使用POS方式,但由于POS设计存在一些问题,开发团队决定在以太坊1.0阶段使用POW方式,预计在Serenity阶段转入POS。

以太坊POW算法叫Ethash,虽只是一个过渡算法,但开发团队一点也不含糊,一如既往发扬其简单问题复杂化,繁琐细节秀智商的设计风格。Ethash 是最新版本的 Dagger-Hashimoto改良算法,是Hashimoto算法结合Dagger算法产成的一个新变种。Ethash设计时就明确两大目标:

抵御矿机性能(ASIC-resistance),团队希望CPU也能参与挖矿获得收益。

轻客户端可快速验证(Light client verifiability)。

基于以上两个目标,开发团队最后倒腾出来的Ethash挖矿时基本与CPU性能无关,却和内存大小和内存带宽成正相关。不过在实现上还是借鉴了SHA3的设计思路,但是使用的SHA3_256 ,SHA3_512与标准实现很不同。

Ethash基本流程是这样的:对于每一个块,首先计算一个种子(seed),该种子只和当前块的信息有关;然后根据种子生成一个32M的随机数据集(Cache);紧接着根据Cache生成一个1GB大小的数据集合(DAG),DAG可以理解为一个完整的搜索空间,挖矿的过程就是从DAG中随机选择元素(类似于比特币挖矿中查找合适Nonce)再进行哈希运算。可以从Cache快速计算DAG指定位置的元素,进而哈希验证。此外还要求对Cache和DAG进行周期性更新,每1000个块更新一次,并且规定DAG的大小随着时间推移线性增长,从1G开始,每年大约增长7G左右。

EQUIHASH

最近在国内发展势头最猛的莫过于Zcash,该币种最大的特点是使用零知识证明实现隐私交易。距离发布还有几天,但从社区讨论来看,各方矿工都已在磨刀霍霍。Zcash对于算法的选择非常慎重,在先后考量了SHA256D,SCRYPT,CUCKOO HASH以及LYRA2等算法后,最终选择Equihash。

Equihash算法由Alex Biryukov 和 Dmitry Khovratovich联合发明,其理论依据是一个著名的计算法科学及密码学问题广义生日悖论问题。Equihash是一个内存(ARM)依赖型算法,机器算力大小主要取决于拥有多少内存,根据两位发明者的论文描述,该算法执行至少需要700M内存,1.8 GHz CPU计算30秒,经Zcash项目优化后,目前每个挖矿线程需要1G内存,因此Zcash官方认为该算法在短时间内很难出现矿机(ASIC)。此外,Zcash官方还相信该算法比较公平,他们认为很难有人或者机构能够对算法偷偷进行优化,因为广义生日悖论是一个已经被广泛研究的问题。此外,Equihash算法非常容易验证,这对于未来在受限设备上实现Zcash轻客户端非常重要。

Zcash官方团队选择Equihash完全出于抵御矿机性能的需求,他们在官方博客中也承认并不敢确保Equihash一定是安全的,并表示如果发现Equihash存在问题,或者发现更优算法,Zcash会改变POW算法。

总结

随着比特币、莱特币矿机相继出现,大家已经认识到没有不能开发矿机的算法,想通过改进算法来彻底阻止矿机和矿池的出现是不可能的。另外,从近几年的发展来看,矿池也没有之前想的那么可怕,甚至已经有人论证了矿池并没有破坏去中心化。但除了安全性,POW往往伴随分发代币功能,从这个角度来说,CPU算法更具公平性,用户门槛更低,这也是算法创新的驱动,从Ethash以及Equihash设计来看,目前的算法创新仍然是以追求内存高消耗为主。以此同时,社区在共识机制的探索之路上也取得很多成果。纵观当前区块链核心技术发展全局,算法创新热潮已经有所消退,但也未停止,于比特币,于区块链,于算法探索而言,都还在路上。